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Melody extraction from polyphonic audio is a re-
search area of increasing interest. It has a wide
range of applications in various fields, including
music information retrieval (MIR, particularly in
query-by-humming, where the user hums a tune to
search a database of musical audio), automatic
melody transcription, performance and expressive-
ness analysis, extraction of melodic descriptors for
music content metadata, and plagiarism detection,
to name but a few. This area has become increas-
ingly relevant in recent years, as digital music
archives are continuously expanding. The current
state of affairs presents new challenges to music li-
brarians and service providers regarding the organi-
zation of large-scale music databases and the
development of meaningful methods of interaction
and retrieval.

In this article, we address the problem of melody
detection in polyphonic audio following a multi-
stage approach, inspired by principles from percep-
tual theory and musical practice. Our system
comprises three main modules: pitch detection, de-
termination of musical notes (with precise temporal
boundaries, pitches, and intensity levels), and iden-
tification of melodic notes. The main contribution
of this article is in the last module, in which a num-
ber of rule-based systems are proposed that attempt
to extract the notes that convey the main melodic
line among the whole set of detected notes. The sys-
tem performs satisfactorily in a small database col-
lected by us and in the database created for the
ISMIR 2004 melody extraction contest. However,
the performance of the algorithm decreased in the
MIREX 2005 database.

Related Work

Previous work on the extraction of symbolic repre-
sentations from musical audio has concentrated es-
pecially on the problem of full music transcription,
which requires accurate multi-pitch estimation for
the extraction of all the fundamental frequencies
present (Martin 1996; Bello 2003; Klapuri 2004).
However, the present solutions are neither suffi-
ciently general nor accurate. In fact, the proposed
approaches impose several constraints on the music
material, namely on the maximum number of con-
current instruments, musical style, or type of in-
struments present.

Little work has been conducted on melody detec-
tion in polyphonic audio. However, this is becoming
a very active area in music information retrieval,
confirmed by the amount of work devoted to the IS-
MIR 2004 and MIREX 2005 evaluations. Several dif-
ferent approaches have been proposed in recent
years (Goto 2001; Brossier, Bello, and Plumbey
2004; Eggink and Brown 2004; Marolt 2004, 2005;
Paiva, Mendes, and Cardoso 2004, 2005b; Dressler
2005; Poliner and Ellis 2005; Ryynänen and Klapuri
2005; Vincent and Plumbey 2005; Gómez et al.
2006). (A few of these systems were originally pub-
lished as non-peer-reviewed online proceedings of
MIREX 2005 and, to our knowledge, were not pub-
lished elsewhere.)

Generally, most current systems, including ours,
are based on a front-end for frequency analysis (e.g.,
Fourier Transform, autocorrelation, auditory mod-
els, multi-rate filterbanks, or Bayesian frameworks),
peak-picking and tracking (in the magnitude spec-
trum, in a summary autocorrelation function, or in
a pitch probability density function), and post-
processing for melody identification (primarily rule-
based approaches based on perceptual rules of sound
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organization, musicological rules, path-finding in
networks of notes, etc.). One exception is Poliner
and Ellis (2005), where the authors follow a different
strategy by approaching the melody-detection prob-
lem as a classification task using Support Vector
Machines.

Melody Definition

Before describing our system, it is important to clar-
ify what we mean by the term melody. An impor-
tant aspect regarding the perception of the main
melodic stream in an ensemble is the phenomenon
of figure-ground organization in audio. This is re-
lated to the “tendency to perceive part of . . . the au-
ditory scene as ‘tightly’ organized objects or events
(the figure) standing out against a diffuse, poorly or-
ganized background (the ground)” (Handel 1989,
p. 551). In this respect, Leonard Meyer wrote

the musical field can be perceived as contain-
ing: (1) a single figure without any ground at all,
as, for instance, in a piece for solo flute; (2) sev-
eral figures without any ground, as in a poly-
phonic composition in which the several parts
are clearly segregated and are equally, or almost
equally, well shaped; (3) one or sometimes more
than one figure accompanied by a ground, as in
a typical homophonic texture of the eighteenth
or nineteenth centuries; (4) a ground alone, as
in the introduction to a musical work—a song,
for instance—where the melody or figure is ob-
viously still to come; or (5) a superimposition of
small motives which are similar but not ex-
actly alike and which have little real independ-
ence of motion, as in so-called heterophonic
textures” (Meyer 1956, quoted in Tsur 2000).

Naturally, our work does not aim to contemplate
all the aspects around the concept of melody. Hence,
we focus this article on the analysis of songs in
which a single figure dominates and is accompanied
by pitched and/or percussive background instru-
ments. In this way, we define melody as “the domi-
nant individual pitched line in a musical ensemble.”
In this definition we exclude unpitched percussion

instruments from the main melody (the “pitched”
requirement); emphasize the analysis of polyphonic
music, i.e., music in which several instruments are
playing concurrently (the “ensemble”); require the
presence of a “dominant” lead voice, where by dom-
inant we mean part that usually stands out in a
mixture, e.g., lead vocals in pop music, lead saxo-
phone in jazz, or a vocal soloist in opera; and ex-
clude from the main melody the accompaniment
parts that dominate when the lead voice is absent
(the “individual line”). Also, we define “line” as a
sequence of musical notes, each characterized by
specific temporal boundaries as well as a correspon-
ding MIDI note number and intensity level. More-
over, we assume that the instrument carrying the
melody is not changed through the piece under
analysis.

System Overview

Our melody-detection algorithm is illustrated in
Figure 1. Different parts of the system were described
in previous publications (Paiva, Mendes, and Car-
doso 2004, 2005a, 2005b); thus, only a brief presen-
tation is provided here for the sake of completeness.
Improvements to the last module (identification of
melodic notes) are described in more detail.

In the multi-pitch detection stage, the objective is
to capture the most salient pitch candidates in each
time frame that constitute the pool of possible fu-
ture notes. Our pitch detector is based on Slaney
and Lyon’s auditory model (Slaney and Lyon 1993),
using 46.44-msec frames with a hop size of 5.8
msec. For each frame, a cochleagram and a correlo-
gram are computed, after which a pitch-salience
curve is obtained by adding across all autocorrela-
tion channels. The pitch salience in each frame is
approximately equal to the energy of the correspon-
ding fundamental frequency. We follow a strategy
that seems sufficient for a melody-detection task:
instead of looking for all the pitches present in each
frame, as happens in general polyphonic pitch de-
tectors, we only capture those that most likely
carry the main melody. These are assumed to be the
most salient pitches, corresponding to the highest
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peaks in the pitch-salience curve. A maximum of
five pitch candidates is extracted in each frame.
This value provided the best trade-off between pitch-
detection accuracy and trajectory-construction
accuracy in the following stage. Details on the
pitch-detection algorithm can be found in Paiva,
Mendes, and Cardoso (2004).

Unlike most other melody-extraction systems,
we attempt to explicitly distinguish individual mu-
sical notes (in terms of their pitches, timings, and
intensity levels), maintaining as well the exact fre-
quency values that might be necessary for the anal-
ysis of performance dynamics or timbre. This is the
goal of the second stage of the algorithm (Determi-
nation of Musical Notes, in Figure 1). To this end,
we first create pitch tracks by connecting pitch can-
didates with similar frequency values in consecu-
tive frames (the pitch trajectory construction, or
PTC, step). We based our approach on the algorithm
proposed by Xavier Serra (1997). The general idea is
to find regions of stable pitches that indicate the
presence of musical notes. The number of pitches in
each frame is small, and so they are clearly spaced
most of the time. Hence, the number of resulting
trajectories is significantly lower compared to ap-
proaches based only on sinusoidal tracks (e.g., Serra
1997). Therefore, our approach minimizes ambigui-
ties in trajectory construction.

To avoid losing information on the dynamic prop-

erties of musical notes, we took special care to keep
phenomena such as vibrato and glissando within a
single track. Thus, each trajectory may contain
more than one note and should, therefore, be seg-
mented in time. This is performed in two phases,
namely frequency-based segmentation and salience-
based segmentation. In frequency-based segmenta-
tion, the goal is to separate all notes of different
pitches that might be present in the same trajectory.
This is accomplished by approximating the pitch se-
quence in each track by a set of piecewise constant
functions, handling glissando, legato, vibrato, and
frequency modulation in general. Each detected
function will then correspond to a MIDI note. De-
spite this quantization effect, the original pitch se-
quences are still kept so that the information on
note dynamics is not lost.

The algorithm for frequency segmentation is
based on a minimum note duration of 125 msec.
This threshold was set based on the typical note du-
rations in Western music. As Albert Bregman points
out, “Western music tends to have notes that are
rarely shorter than 150 msec in duration” (1990,
p. 462). We experimented with a range between 60
and 150 msec, but the defined threshold of 125
msec led to the best results. It is noteworthy that
this value is close to the one mentioned by Mr.
Bregman.

With segmentation based on pitch salience varia-
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Figure 1. Overview of the
melody-detection system.
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tions, the objective is to separate consecutive notes
at the same frequency that the PTC algorithm may
have mistakenly interpreted as forming only one
note. This requires trajectory segmentation based
on pitch-salience minima, which mark the tempo-
ral boundaries of each note. To increase the robust-
ness of the algorithm, note onsets are detected
directly from the audio signal and used to validate
the candidate salience minima found in each pitch
track. The procedures conducted at the note-
determination stage are described in Paiva, Mendes,
and Cardoso (2004, 2005b).

In the last stage, our goal is to identify the final
set of notes representing the melody of the song un-
der analysis. This is the main topic of this article
and is described in the following sections.

Identification of Melodic Notes

After the first two stages of our system (see Figure
1), several notes from each of the different instru-
ments present in the piece under analysis are ob-
tained, among which the main melody must be
identified. The separation of the melodic notes in a
musical ensemble is not a trivial task. In fact, many
aspects of auditory organization influence the per-
ception of the main melody by humans, for instance
in terms of the pitch, timbre, and intensity content
of the instrumental lines in the sonic mixture.

Robert Francès investigated the figure–ground re-
lationship in music (1958, cited in Uitdenbogerd
2002, p. 15). The main conclusion of his studies was
that a musical part is heard as the figure if it is
higher in pitch than the accompanying parts. How-
ever, this rule fails in some instances. For example,
if the upper notes are more or less constant and the
lower ones form a more interesting pattern, the
lower notes will more easily catch a listener’s atten-
tion and will thus be heard as the figure. Besides
pitch height, other factors affect the perception of a
part as the figure, namely frequency proximity and
intensity (Uitdenbogerd 2002, p. 15).

In our algorithm, we have made particular use of
intensity- and frequency-proximity aspects, as will
be described. Namely, we based our strategy on the
following assumptions: regarding intensity, the

main melodic line often stands out in the mixture
(the salience principle); and melodies are usually
smooth in terms of note-frequency intervals (the
melodic smoothness principle). Also, we attempt
to eliminate non-melodic notes, i.e., false posi-
tives, in the resulting melody. Prior to the identifi-
cation of the main melody, “ghost octave” notes
are eliminated. The strategy for melody identifica-
tion comprises four steps, as illustrated in the rec-
tangle marked Identification of Melody Notes in
Figure 1.

Elimination of Ghost Octave Notes

The set of candidate notes resulting from trajectory
segmentation typically contains several ghost oc-
tave notes. The partials in each such note are actu-
ally multiples of the true note’s harmonics (if the
ghost octave note is higher than the true note) or
submultiples (if it is lower). Therefore, the objective
of this step is to dispose of such notes.

In short, we look for harmonic relations between
all notes, based on the fact that some of the ob-
tained pitch candidates are actually harmonics or
sub-harmonics of true fundamental frequencies in
the sound wave. Therefore, we make use of the per-
ceptual rules of sound organization designated as
harmonicity and common fate (Bregman 1990).
Namely, we look for pairs of octave-related notes
with common onsets or endings and with common
modulation, i.e., whose frequency and salience se-
quences change in parallel. We then delete the
least-salient note if the ratio of its salience to the
salience of the other note is below a defined thresh-
old. This procedure is summarized in Algorithm 1
(Figure 2).

In this algorithm, while looking for octave-related
notes with common onsets and endings (step 2.1a),
some relaxation is introduced. In quantitative
terms, two notes are said to have common onsets if
their beginnings differ at most by maxOnsetDist,
i.e., 62.5 msec. The same maximum difference ap-
plies when comparing the two notes’ endpoints.
This somewhat high value was experimentally set
to handle timing inaccuracies that may result from
noise and frequency drifting at the beginnings and
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(1)

where df, represents the distance between two fre-
quency trajectories, fi(t) and fj(t), during the time in-
terval [t1, t2], where both trajectories exist. Equation
1 attempts to scale the amplitude of each curve by
its average, thereby normalizing it. An identical
process is followed for the salience curves.

This procedure is illustrated in Figure 3 for the
frequency sequences of two octave-related note can-
didates from an opera excerpt with extreme vibrato.
(See Table 1, which appears later in this article, in
the section entitled “Experimental Results.”) We
can see that the normalized frequency curves are
very similar, which provides good evidence that the
two sequences are both part of the same note.

Additionally, we found it advantageous to mea-
sure the distance between the normalized deriva-
tives of frequency curves (and, likewise, the
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endings of notes. In actual notes, the onset asyn-
chronies between partials do not exceed 30–40
msec, because at that point each partial may be
heard as a separate tone (Handel 1989, p. 214).

In step 2.1b, we test if the two notes are octave-
related (i.e., their MIDI note numbers, MIDI(i) and
MIDI(j), differ by multiples of twelve semitones),
tolerating deviations of one semitone to handle pos-
sible semitone errors. Here, k is an integer that rep-
resents the number of octaves that separate them.

In step 2.1c, we exploit the fact that frequency se-
quences belonging to the same note tend to have
synchronized and parallel changes in frequency and
intensity (here represented by pitch salience). Thus,
we measure the distance between frequency curves
for pairs of octave-related note candidates. Simi-
larly, we measure the distance between their
salience curves.

Formally, the distance between frequency curves
is calculated according to Equation 1, based on Vir-
tanen and Klapuri (2000):
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Figure 2. Algorithm 1:
Elimination of ghost oc-
tave notes.



Paiva et al.

derivatives of salience curves). In fact, it is common
that these curves have high absolute distances de-
spite exhibiting the same trends. The distance be-
tween derivatives is used as another measure of
curve similarity. This is illustrated in Figure 4 for
the pitch-salience curves of two notes from the
same opera excerpt. Note that, although the de-
picted saliences differ somewhat, their trends are
very similar, i.e., the distance between the normal-

ized derivates is small. Thus, it is also likely that
they both belong to the same note.

To conclude the common modulation analysis,
we assume that the two candidate notes have paral-
lel changes if any of the four computed distances
(i.e., in frequency, salience, or their derivatives) are
below a threshold of 0.04. Finally, in step 2.2 of Al-
gorithm 1 (see Figure 2), we eliminate one of the
notes if its salience is less than 40% of the most
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Figure 3. Example of simi-
larity analysis of frequency
curves.

Figure 4. Example of simi-
larity analysis of salience
trends.

Table 1. Description of Used Song Excerpts

ID Song Title Category Solo Type

1 Pachelbel’s Canon Classical Instrumental
2 Handel’s Hallelujah Choral Vocal
3 Enya - Only Time New Age Vocal
4 Dido - Thank You Pop Vocal
5 Ricky Martin - Private Emotion Pop Vocal
6 Avril Lavigne - Complicated Pop / Rock Vocal
7 Claudio Roditi - Rua Dona Margarida Jazz / Easy Instrumental
8 Mambo Kings - Bella Maria de Mi Alma Bolero Instrumental
9 Compay Segundo - Chan Chan Son Vocal
10 Juan Luis Guerra - Palomita Blanca Bachata Vocal
11 Battlefield Band - Snow on the Hills Scottish Folk Instrumental

12 daisy2 Synthesized singing voice Vocal
13 daisy3 Synthesized singing voice Vocal
14 jazz2 Saxophone phrases Instrumental
15 jazz3 Saxophone phrases Instrumental
16 midi1 MIDI synthesized Instrumental
17 midi2 MIDI synthesized Instrumental
18 opera_fem2 Opera singing Vocal
19 opera_male3 Opera singing Vocal
20 pop1 Pop singing Vocal
21 pop4 Pop singing Vocal

Rows 1–11 are from our test bed and rows 12–21 are from the MEC-04 training set.



salient note if they differ by one octave, 20% if they
differ by two octaves, and so forth.

The values for curve-distance and salience-ratio
thresholds were experimentally set so that the
elimination of true melodic notes was minimal,
while still deleting a significant amount of ghost
octave notes. This is motivated by the fact that
missing notes cannot be recovered in later stages
but, instead, false candidates can be eliminated
afterward.

In the testing database, an average of 38.1% of
notes that resulted from the note-determination
stage were eliminated. Moreover, only 0.3% of true
melodic notes were deleted. Although many ghost
notes were discarded at this point, a high number of
non-melodic notes were still present. Namely, only
25.0% of all notes belonged to the melody. This
posed interesting challenges to the next steps of the
algorithm.

Selection of the Most Salient Notes

As previously mentioned, intensity is an important
cue in melody identification. Therefore, we select
the most salient notes as an initial attempt at
melody identification. The procedures conducted at
this stage are described in Algorithm 2 (Figure 5).

In Algorithm 2, notes below MIDI note number
50 (146.83 Hz) are excluded (step 2). This constraint
was motivated by the fact that bass notes usually
contain a great deal of energy, and so if no frequency
limit were set, these notes would probably be se-
lected. To prevent the selection of too many erro-
neous notes (which would put at risk melody
smoothing in the next stage), we first dispose of
such notes. Thus, our algorithm is biased toward se-
lecting middle- and high-frequency notes, which in-
deed corresponds to most real situations.
Low-frequency notes may still be selected in the
next stage, where this restriction will be relaxed
provided melodic smoothness is guaranteed. Alter-
natively, we could have filtered bass notes in the
front-end of the system; however, this would lead to
the irrecoverable loss of true low-frequency notes.

In step 3, non-dominant notes are discarded. To
this end, we segment the song excerpt under anal-

ysis, as illustrated in Figure 6, where, sk denotes for
the kth segment. Then, we delete all notes that are
non-dominant, i.e., that are not in the most salient
segment more than 35% of their total number of
frames or are not in the three most salient segments
for more than 80% of their total number of frames.

It often happens that the remaining notes overlap
in time, which should not be allowed. We handle
such situations in step 4, where we first analyze the
possible types of time overlaps between pairs of
notes. We have identified six overlapping types, il-
lustrated in Figure 7.

The first considered overlapping type, correspon-
ding to a situation where the two notes have ap-
proximately the same onsets and endings. In this
case, the maximum allowed distance between the
onsets and endings is maxOnsetDist, as previously
defined. In the second and third overlapping types,
the two notes have common onsets but different
endings. In the fourth possibility, notes under com-
parison have equal endings but different onsets. Fi-
nally, in the fifth and sixth overlapping types, the
two notes have neither common onsets nor com-
mon endings. The fifth type denotes inclusions,
where the second note starts after and ends before
the reference note. The sixth type corresponds to
the situations where the notes intersect, i.e., the
second note starts and ends after the beginning and
the ending of the reference note, respectively, con-
sidering again the maximum allowed difference.

Each candidate note is then compared with the
notes with temporal overlapping, and the overlap
type is determined (step 4.2.2). In short, preference
is given to the note with the highest average
salience in their common time interval (step 4.2.3),
leading to the elimination or truncation of the other
note (steps 4.2.4 and 4.2.5). For example, in the sec-
ond overlap type in Figure 7, if the reference note
has the highest average salience in the common
time interval, the second note is deleted. In the op-
posite case, the second note is kept unchanged,
whereas the reference note is truncated at its begin-
ning (i.e., it will start later, immediately after the
second note ends). The same reasoning applies to all
situations except for inclusions (the fifth situation).
Here, if the second note is the strongest one, only
the beginning or the ending of the reference note is
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Figure 5. Algorithm 2: Se-
lection of the most salient
notes.



kept, depending on the salience of each. Addition-
ally, the original note timings are saved for future
restoration (step 4.1), in case any of the selected
notes are removed in the following stages.

The results of the implemented procedures are il-
lustrated in Figure 8 for an excerpt from Pachelbel’s
famous Canon in D. We can see that some erro-
neous notes are extracted, whereas true melody
notes are excluded. Namely, some octave errors oc-
cur. In fact, one of the limitations of only taking
into consideration note salience is that the notes
comprising the melody are not always the most
salient ones. In this situation, wrong notes may be
selected as belonging to the melody, whereas true
notes are left out. This is particularly clear when
abrupt transitions between notes are found, as can
be seen in the previous figure. Hence, we improved
our method by smoothing out the melody contour,
as discussed in the next subsection.

Melody Smoothing

In an attempt to demonstrate that musicians gener-
ally prefer to use smaller note steps, the psycholo-
gist Otto Ortmann counted the number of
sequential intervals in several works by classical
composers; he found that the smallest ones occur
more frequently and that their respective number
roughly decreases in inverse proportion to the size
of the interval (Bregman 1990, p. 462). In fact,
small-frequency transitions favor melody coher-
ence, because smaller steps in pitch “hang to-
gether” better (Bregman 1990, p. 462). Thus, we
improved the melody-extraction stage by taking ad-
vantage of the melodic-smoothness principle. Al-
though this might be a culturally dependent

principle, it is relevant at least in Western tonal
music.

The process of melody smoothing is presented in
Algorithm 3 (shown in Figure 9). The basic idea is to
detect abrupt note intervals and replace notes corre-
sponding to sudden movements to different regis-
ters by notes that smooth out the extracted melody.
In this stage, we start to improve the tentative
melody that results from the selection of the most
salient notes by performing octave correction (step
1 of Algorithm 3).

In fact, octave errors might occur because Algo-
rithm 1 typically does not eliminate all ghost octave
notes. This simple first step already improves the fi-
nal melody significantly. However, a few octave er-
rors, as well as abrupt transitions, are still present;
these are worked out in the following steps.

In the second step, we smooth out the melodic
contour by deleting or substituting notes correspon-
ding to sudden movements to different registers. To
this end, we first define regions of smoothness (step
2.1), i.e., regions with no abrupt note intervals.
Here, intervals above a fifth, i.e., seven semitones,
are defined as abrupt, as illustrated in Figure 10.
This maximum-note interval was set based on the
importance of the perfect fifth in Western music.
Other intervals were evaluated as well, but, in the
used excerpts, the best results were obtained with
the fifth.
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Figure 6. Definition of seg-
ments in a song excerpt.
The horizontal lines de-
note the notes present after
eliminating ghost notes.

The vertical lines deter-
mine segment boundaries,
which correspond to note
beginnings and endings.

Figure 7. Types of note
overlapping. The reference
note (thick line) is, by defi-
nition, the one with the
earliest onset time. The

other horizontal lines rep-
resent time spans of hypo-
thetical notes that overlap
in time with the reference
note.
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In the example in Figure 10, four initial smooth
regions are detected: R1, R2, R3, and R4. We then se-
lect the longest region as a correct region (region R3

in Figure 10, filled in gray) and define the allowed
note range for its adjacent regions (R2 and R4). Re-
gion R2 is a candidate for elimination, because it
contains no notes in the allowed range (MIDI note
number of note a2 ± 7, i.e., [63, 77]). However, before
deletion, we first look for octave multiples of each
of its notes in the allowed range. In case at least one
octave is found, the original notes are replaced by
the corresponding octaves, and no note is deleted in
this iteration. Otherwise, all the notes in the region
are eliminated.

As for region R4 (i.e., the region immediately after
the longest one), we perform a similar analysis.
Hence, we define the allowed range based on the
last note of the correct region, e.g., 69 in this ex-
ample, resulting in the range [62, 76]. Because re-
gion R4 contains a few notes in the allowed range,
its first note, i.e., note a3, is marked as non-abrupt,
and regions R3 and R4 are joined together. (Still, if an
octave of note a3 is found in the allowed range, it is
used instead of the original note.) In this way,
abrupt transitions are allowed in case adjacent re-
gions have notes in similar ranges. This situation
occurs in some musical pieces as, for example,
Pachelbel’s Canon (Figures 8 and 11).

As a result of region elimination, the respective
notes must be replaced by other notes that are more
likely to belong to the melody according to the
smoothness principle. Thus, in step 3, we fill in
each gap with the most-salient note candidates that
begin in that time interval and are in the allowed
range. Again, we do not permit note overlaps. In

this gap-filling procedure, the previous restriction
on the minimum-allowed pitch (in the selection of
the most-salient notes) no longer applies: the most
salient note in the allowed range is selected, regard-
less of its MIDI note number. In fact, that restric-
tion was imposed as a necessity to prevent the
selection of too many erroneous notes (particularly
bass notes), which would jeopardize melody
smoothing. Therefore, we kept the general assump-
tion that melodies are contained in middle fre-
quency ranges, but permitting now the selection of
low-frequency notes, as long as the smoothness re-
quirement is fulfilled.

The results of the implemented procedures are il-
lustrated in Figure 11 for the same excerpt from
Pachelbel’s Canon presented before. We can see
that only one erroneous note resulted (signaled by
an ellipse), corresponding to an octave error. This
example is particularly challenging to our melody-
smoothing algorithm owing to the periodic abrupt
transitions present. However, the performance was
quite good.

Elimination of False Positives

When pauses between melody notes are fairly long,
non-melodic notes, resulting either from noise or
background instruments, may be included in the ex-
tracted melody. (In particular, the gap-filling step
described in the previous stage is often a cause of
this phenomenon.) We observed that such notes
typically have lower saliences and shorter dura-
tions, leading to clear minima in the pitch-salience
and duration contours. In this way, we attempt to
eliminate false positives by detecting and discarding
the notes corresponding to the aforementioned min-
ima, as described in Algorithm 4 (see Figure 12).

Regarding the pitch-salience contour, we start by
deleting notes corresponding to clear minima in the
salience contour (step 1). There, a given local min-
ima is defined as clear if its prominence (i.e., the dif-
ference between its amplitude and that of both the
global maxima before and after it) is at least 30. This
value is based on the fact pitch saliences were nor-
malized into the [0, 100] interval in the pitch-
detection stage. Moreover, it was experimentally set

89

Figure 8. Results of the al-
gorithm for extraction of
salient notes. The actual
melody’s notes are gray;
the notes selected by the

algorithm are black;
dashed lines represent
notes that are kept after
the elimination of ghost
notes.
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Figure 9. Algorithm 3:
Melody smoothing.
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so that the trade-off between the elimination of false
positives and true melodic notes was satisfactory.

A jazz excerpt (the “jazz3” sample in Table 1; see
the Experimental Results section), where the solo is
often absent, was chosen to illustrate the conducted
procedure. The salience contour of the employed
sample is depicted in Figure 13. It can be seen that
two true notes were, nevertheless, removed. Be-
sides, with a lower elimination threshold, a few
more false positives would have been deleted, but
best overall results were obtained with the defined
threshold.

As for the duration contour (step 2), we proceeded
likewise. However, we observed that duration varia-
tions are much more common than pitch-salience
variations. This was expected, because tone lengths
tend to vary significantly. In this way, we decided to
eliminate only isolated abrupt duration transitions,
i.e., individual notes whose adjacent notes are sig-
nificantly longer. Here, we define a note as being
too short if its duration is at most 20% of its neigh-
bors. Additionally, a minimum difference of three
semitones was defined to prevent inadvertently
deleting short ornamental notes, such as commonly
used whole-step grace notes. Finally, in step 3, the
time intervals of previously truncated notes (Algo-
rithm 2, step 4.1, in Figure 5) that are adjacent to
the deleted ones are restored. The melody that re-
sults after elimination of false positives is illus-
trated in Figure 14 for the same jazz excerpt in
Figure 13.

It can be seen that, even though a few extra notes
are disposed of (including two true melodic notes),
some false positives remain. In this way, we have
conducted a pilot study aiming to further discrimi-
nate between melodic and accompaniment notes.
This was based on feature extraction and note clus-
tering using Gaussian Mixture Models. The average

results for melody segregation improved slightly,
but so far the method is not sufficiently robust, be-
cause the best set of features varies significantly
from sample to sample. In fact, if in some excerpts
melody segregation improved notoriously, in other
samples the accuracy dropped. In any case, the ap-
proach seems promising, but more general conclu-
sions required evaluation on a larger corpus. Details
on the algorithm can be found in Paiva, Mendes,
and Cardoso (2005b).

Experimental Results

One difficulty regarding the evaluation of MIR sys-
tems comes from the absence of standard test col-
lections and benchmark problems. This was partly
solved through the creation of a set of evaluation
databases for the ISMIR 2004 Melody Extraction
Contest (MEC-04) and for MIREX 2005 (see Table 1).

Ground Truth Data

We evaluated the proposed algorithms with both
the MEC-04 database and a small database we had
previously created (see Table 1). Each of these data-
bases were designed taking into consideration diver-
sity and musical content. Therefore, the selected
song excerpts contain a solo (either vocal or instru-
mental, corresponding to the main melody, accord-
ing to our previous definition) and accompaniment
parts (guitar, bass, percussion, other vocals, etc.).
Additionally, in some excerpts, the solo is absent for
some time. In our test bed, we collected excerpts of
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Figure 10. Regions of
smoothness. R3 is the
longest region (the length
of each region is the sum of
the lengths of all its notes);
bold notes correspond to
abrupt transitions.

Figure 11. Results of the
melody-smoothing
algorithm.
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Figure 12. Algorithm 4:
Elimination of false
positives.
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about 6 sec from 11 songs that were manually anno-
tated with the correct notes. As for the MEC-04
database, 20 excerpts, each around 20 sec, were au-
tomatically annotated based on monophonic pitch
estimation from multi-track recordings, as de-
scribed in Gómez et al. (2006). From these, we em-
ployed the defined training set, consisting of 10
excerpts.

Contradicting our previous assumptions, we have
selected a choral piece (ID 2), consisting of four si-
multaneous voices plus orchestral accompaniment.
The idea was to observe the behavior of the algo-
rithm in this situation, where we defined the solo as
corresponding to the soprano. Additionally, we eval-
uated the algorithm on the Music Information Re-
trieval Evaluation eXchange (MIREX 2005) database
(25 excerpts of 10–40 sec). The employed audio files
were not made public, and so only average results
are provided here.

Evaluation Metrics

Depending on the application, the melody might be
extracted as a sequence of MIDI notes or as a con-
tinuous pitch contour. For example, in tasks such as
audio-to-MIDI conversion or query-by-humming,
notes should be explicitly determined. In other
tasks, e.g., analysis of performance dynamics (vi-
brato, glissando, etc.), pitch contours are preferred.

In our system, we are particularly interested in
obtaining musical notes, although pitch-track con-
tours are also available. Moreover, in our test bed,
we do not know the exact target frequencies, and so
we evaluate MIDI note-extraction accuracy. Regard-

ing the MEC-04 database, because both exact fre-
quencies and quantized notes are available, the two
possibilities are evaluated.

Regarding pitch-contour accuracy, we used the
two metrics defined in Gómez et al. (2006). The first
metric, melodic pitch accuracy (MPA), uses only
melodic frames. Here, the pitch detection error is
measured by averaging the absolute difference be-
tween the annotated pitches and the extracted ones.
This error is bounded to a maximum of one semi-
tone, i.e., 100 cents, and is computed as

(2)

Here, fcent
ext [i] and fcent

ref [i] denote, respectively, the
extracted and annotated fundamental frequencies
(in cents) in the ith frame, and err[i] denotes the ab-
solute pitch-detection error in the same frame.
Then, the final score (on a 0–100 scale) is computed
by subtracting the bounded mean absolute differ-
ence from 100:

(3)

where N is the total number of frames in the ex-
cerpt under analysis.

The second metric, overall pitch accuracy (OPA),
uses both melodic and non-melodic frames in the
calculation of the error. There, the target value of
non-melodic frames is set to 0 Hz. This metric indi-
rectly evaluates the capability of separating the
melody from the accompaniment. Therefore, inac-
curate melody discrimination will lead to a decrease
in this metric compared to MPA.
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Figure 13. Pitch salience
contour (jazz3 excerpt),
where “*” denotes false
positives, and “o” repre-
sents deleted notes. Pitch
saliences are normalized
to the interval [0, 100].

Figure 14. Results of the al-
gorithm for elimination of
spurious notes. Thick
black lines denote true
positives, thin black lines

represent false positives,
thick gray lines denote
deleted true notes, and
thin gray lines represent
deleted non-melodic notes.



Regarding note accuracy, we could simply count
the number of correctly extracted notes and divide
it by the total number of annotated notes. However,
to have a more precise figure that could cope with
notes with different lengths, duration mismatches,
etc., we decided to compute the note-accuracy met-
ric as the percentage of correctly identified frames.
There, the target and the extracted frequency val-
ues in each time frame were defined as the equal-
temperament frequencies (ETF) of the corresponding
notes. Again, both the melodic note accuracy (MNA)
and overall note accuracy (ONA) are computed.

Finally, we compute two other statistics to evalu-
ate the ability of the system to separate the melody
from the accompaniment: recall (i.e., the percentage
of annotated non-melodic frames that the system
classifies correctly as non-melodic) and precision
(i.e., the percentage of extracted non-melodic frames
that are indeed non-melodic).

Results and Discussion

Before presenting the results for the melody-
identification stage, we summarize the results ob-
tained in the previous stages for completeness. For
multi-pitch detection, we achieved 81.0% average
pitch accuracy (nearly the same, i.e., 81.2%, if oc-
tave errors are ignored). In this evaluation, we com-
pared the annotated frequency in each frame with
the closest extracted pitch. In case only the most
salient pitch were selected in each frame, the accu-
racy dropped to 53.0% (65.6%, if octave errors were
ignored). In our test bed, the extracted pitches were
quantized to the closest ETFs, which best suits the
conducted manual annotation. (Naturally, the ac-
tual pitch-detection accuracy is slightly distorted if
one single annotated note spans several MIDI note
numbers, e.g., in the case of glissando and vibrato.)

Regarding note determination, pitch tracks were
segmented with reasonable accuracy. In terms of
frequency-based segmentation, average recall (i.e.,
the percentage of annotated segmentation points
correctly identified, considering a maximum differ-
ence of maxOnsetDist) was 72%, and average preci-
sion (i.e., the percentage of identified segmentation
points that corresponded to actual segmentation

points) was 94.7%. Moreover, the average time error
was 28.8 msec (which may be slightly distorted by
annotation errors), and the average semitone error
rate for the melodic notes was 0.03%. In terms of
MIDI note accuracy, the average accuracy was
89.2%; in other words, among all the extracted
notes, 89.2% correspond to the melody (for pitch
contours, the average accuracy was 86.6%). These
values are higher than that for pitch detection, be-
cause undetected pitches are partly recovered by
substituting empty frames in the defined notes with
the corresponding ETF.

Most of the encountered difficulties in frequency-
based segmentation came from operatic samples
with extreme vibrato. In those cases, the number of
false negatives and semitone errors was clearly
above the average. In any case, in excerpts with
moderate vibrato, results were quite satisfactory. As
for salience-based segmentation, many false posi-
tives resulted, with a consequent decrease in aver-
age precision (41.2%), against 75.0% average recall.
Finally, the results for the identification of melodic
notes are summarized in Table 2 (for the song ex-
cerpts presented in Table 1).

As for the elimination of irrelevant notes (first
column), we can see that 88.9% of the melodic
notes are still kept after this stage. Moreover, as pre-
viously mentioned, an average of 38.1% of notes
from the note-identification stage were eliminated,
among which only 0.3% of true melodic notes were
inadvertently deleted.

Without melody smoothing (the second and third
columns in Table 2), the average MNA was 74.6,
and the average ONA was 66.0%. Therefore, a high
number of melodic notes are missing. After melody
smoothing (the fourth and fifth columns), the aver-
age accuracy improved to 84.4% and 75.6%, respec-
tively. Hence, our implementation of the
melodic-smoothness principle amounts for an aver-
age improvement of 9.8% and 9.6% in the melodic
and overall note metrics, respectively.

Several octave errors were corrected, especially in
the excerpts from Battlefield Band and Pachelbel’s
Canon (IDs 11 and 1, respectively). In fact, in the
presented experiments, the proposed approach was
almost immune to octave errors. Indeed, disregard-
ing these errors (i.e., performing a chroma-based
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evaluation), the MNA for melody smoothing was
85.2%, leading to an improvement of only 0.8%.

Regarding the elimination of false positives (sixth
and seventh columns), we can see that the average
overall note accuracy improved only slightly (1.4%).
However, a few true melodic notes were erroneously
deleted in some excerpts (jazz3 and midi1; IDs 15
and 16). The value for the MNA metric increased in
some samples as a result of restoring previously
truncated notes after elimination of false positives.
Overall, the average MNA remained the same.

Finally, in the last column, we observe that an av-
erage of 94.4% of melodic notes were kept among
those available after the elimination of ghost octave
notes (first column). Only the operatic samples (IDs
18 and 19) stayed much below the average, because
too many non-melodic notes were initially selected,
thus misleading the melody-smoothing algorithm.
In fact, in these cases, long smooth regions with

several non-melodic notes are defined, which the
smoothing algorithm leaves untouched.

We can see that, in the given excerpts, the overall
accuracy is always lower than the melodic accuracy.
In fact, our algorithm shows a limitation in dispos-
ing of false positives (i.e., accompaniment or noisy
notes): 31.0% average recall and 52.8% average pre-
cision. This is a direct consequence of the fact that
the algorithm is biased detecting the maximum of
melodic notes, no matter if false positives are in-
cluded. As mentioned, a pilot study was conducted
to improve this limitation, which needs to be fur-
ther elaborated.

Comparing the two databases, it can be seen that
the results in our database were generally higher
than those for the MEC-04 train set. This is a conse-
quence of the fact that, in our samples, the signal-
to-noise ratio (SNR, hereafter defined as the ratio
between the energy of the melody and the accompa-
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Table 2. Results for the Melody-Identification Stage, Showing Melodic Note Accuracy (MNA) and Overall
Note Accuracy (ONA)

Elim. Salient Notes Melody Smoothing Elimination of FP

ID MNA MNA ONA MNA ONA MNA ONA %kept

1 98.0 54.1 53.2 90.5 89.0 90.5 89.0 92.3
2 82.2 70.6 56.9 80.5 65.5 80.5 65.5 97.9
3 95.4 94.2 91.1 93.6 90.6 93.6 90.6 98.1
4 96.6 86.9 67.5 95.6 74.2 95.6 74.2 99.0
5 85.3 67.4 51.2 78.1 57.2 78.1 57.2 91.5
6 93.6 70.4 61.4 90.8 80.6 90.8 80.6 97.1
7 98.8 93.5 87.2 98.2 91.7 98.2 91.7 99.5
8 93.6 90.3 83.4 93.6 86.4 93.6 86.4 100.0
9 86.5 81.3 64.6 81.3 64.6 81.3 64.6 94.1
10 81.1 75.1 53.8 75.1 53.8 75.1 53.8 92.6
11 95.4 31.6 31.7 94.2 92.8 94.2 92.8 98.7
12 96.5 91.3 79.2 92.0 81.8 95.4 86.8 98.8
13 98.1 84.7 84.6 97.5 97.5 97.5 97.5 99.4
14 79.5 71.6 66.9 73.6 70.4 74.1 72.7 93.1
15 90.8 83.1 61.2 87.3 64.1 83.6 74.7 92.1
16 91.7 69.6 67.6 87.4 85.5 86.4 85.8 94.3
17 98.4 93.3 91.9 96.7 95.2 96.7 95.2 98.2
18 78.4 66.5 59.8 66.6 64.2 66.6 64.2 84.9
19 69.5 42.5 40.7 47.4 44.2 47.4 45.0 68.1
20 71.5 69.7 61.9 69.6 65.6 70.1 70.8 98.0
21 87.0 78.9 69.3 82.3 74.1 83.0 78.1 95.4
Avg 88.9 74.6 66.0 84.4 75.6 84.4 77.0 94.4



niment parts) was generally higher. In fact, a higher
SNR leads to more accurate pitch detection, be-
cause fewer melodic pitches are masked. In any
case, except for the operatic samples, the metric in
the last column of Table 1 was nearly the same for
both databases.

To compare the present results with those from
the ISMIR 2004 melody-extraction contest, we also
evaluated our approach with the exact frequency
values used there. As a consequence, the accuracy
after eliminating false positives, taking into consid-
eration only the MEC-04 database, dropped from
80.1% (for MNA) and 77.1% (for OPA) to 75.1% and
71.1%, respectively, i.e., approximately 5–6%.

The parameters used in our algorithm were tuned
using the excerpts in Table 1. Some of the defined
thresholds were based on common musical practice
(e.g., minimum note duration and maximum note
interval), as previously defined. However, other val-
ues were empirically set, although our initial
guesses were usually close to the final values (e.g.,
the parameters for the elimination of non-dominant
notes). To evaluate the effect of parameter variance
in the final results, parameter values were individu-
ally modified, typically in a ±50% range from the
defined thresholds (up to ±100% in some parame-
ters, e.g., maximum number of notes in each seg-
ment, as in Figure 6). In the conducted experiments,
we observed a maximum average decrease of 7% in
the MNA metric. However, a few individual ex-
cerpts had higher variations. For instance, in Juan
Luis Guerra’s sample (ID 10), we observed accuracy
oscillations of up to +5% and –15%.

The final melody-extraction accuracy is obvi-
ously influenced by the results obtained in the first
two stages of the system (depicted in Figure 1).
Namely, inaccurate pitch detection automatically
constrains the final results of the system. However,
this has more to do with the nature of the used song
excerpts than to algorithmic decisions in pitch de-
tection (e.g., strong percussion may lead to signifi-
cant pitch masking). Regarding determination of
musical notes, different parameterizations have
some influence on the accuracy of the following
stages of the algorithm, particularly the minimum
note-duration parameter. Namely, the maximum
decrease in average melody note accuracy was

6.5%, which resulted from a minimum note dura-
tion of 60 msec.

To assess the generality of our algorithm and the
specific parameter tuning, we evaluated it with the
test set used in the ISMIR 2004 melody extraction
contest, consisting of ten additional samples. The
achieved results for MPA and ONA were 72.1% and
70.1%, respectively. For MNA and OPA, the accu-
racy was 77.4% and 75.1%, respectively. Hence,
the obtained results are only slightly below those
achieved in the MEC-04 training set.

For the MIREX 2005 evaluation, the pitch-contour
accuracy was evaluated by measuring the percent-
age of correctly identified frames, which correspond
to a maximum separation of a quarter-tone from the
annotated frequencies. In this test bed the melodic
and overall pitch contour accuracy of our algorithm
dropped to 62.7% and 57.8%, respectively. Al-
though we did not have access to the used excerpts,
three representative samples were provided that al-
low us to deduce that this decrease in efficiency is
mostly due to the use of excerpts with lower SNRs.
In this case, too many non-melodic notes might
have been initially selected (a consequence of bas-
ing our algorithm on the salience principle), which
the smoothing algorithm was unable to fix.

For comparison, the following tables summarize,
respectively, the ISMIR 2004 (Gómez et al. 2006)
and MIREX 2005 evaluations. (For full details, see
www.music-ir.org/evaluation/mirex-results/audio-
melody/index.html.) In Table 3, the metrics shown
for all participants correspond to an average be-
tween the training set and the test set. Our average
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Table 3. Summary of the Results in the ISMIR 2004
Evaluation

Participant OPA OPA (chroma)

Paiva 69.1 69.7
Poliner 56.1 57.1
Bello 50.8 57.7
Tappert 42.2 55.9

Bibliographic references of each system are provided in
the References section (as cited in the Related Work sec-
tion). Brief descriptions of Bello’s and Tappert’s systems
can be found in Gómez et al. (2006).
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results using the two sets are at present slightly
higher (70.6% in the OPA metric).

As for Table 4, the algorithm corresponding to
Paiva2 extracts several pitches in each frame,
whereas in Paiva1, only one pitch is extracted. Se-
lecting only one pitch led to a better overall accu-
racy, because the number of false positives
decreased. Unlike our test-bed, the melodic accu-
racy is only slightly below that of Paiva1. This is a
consequence of the aforementioned difficulties in
detecting the correct melodic notes in this dataset.

Conclusions

In this article, we proposed a system for melody de-
tection in polyphonic musical signals. The achieved
results are encouraging given the current initial
stage of research in this topic. However, one present
limitation of our approach is the inefficient discrim-
ination between melody and accompaniment. To
this end, we have conducted a pilot study on clus-
tering of melodic notes that must be further refined.
Moreover, limitations were also present in the anal-
ysis of operatic excerpts with extreme vibrato and
in songs with low signal-to-noise ratios, given our
initial assumption that the melody is usually
salient in a mixture. As for database size, we hope

to create a larger musical corpus in the future to
more rigorously evaluate our system, namely in
terms of some of the involved algorithmic decisions
and parameter tuning.
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